

An Update on the HIV Prevention Landscape: The Role of Combination Prevention

Susan Buchbinder, MD Bridge HIV, SFDPH; UCSF MTN Regional Meeting October 29, 2013

1

Overview

- 1. Why combination prevention?
- 2. Individual prevention components (some highlights)
- 3. Challenges and the way forward

Why combination prevention?

What Works in HIV Prevention – November 2011

Stu	Effect size (CI)	
Prime-Boost vaccine (Thai RV144, 2009)	_	31 % (1, 51)
1% tenofovir gel (CAPRISA 004, 2010)		39 % (6, 60)
TDF/FTC oral PrEP (iPrEx, 2010)		44 % (15, 63)
Medical male circumcision (Orange Farm, 2005; Rakai, Kisumu, 2007)		57 % (42, 68)
TDF/FTC oral PrEP (TDF2, 2011)		63 % (22, 83)
TDF oral PrEP (Partners PrEP, 2011)		62 % (34, 78)
TDF/FTC oral PrEP (Partners PrEP, 2011)		73 % (49, 85)
Immediate ART for HIV-positive partne (HPTN 052, 2011)	er —	96 % (82, 99)
	0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%	Efficacy

Visit *www.avac.org/timeline* to find links to the publications and/or presentations associated with each of these findings as well as information on studies that showed flat or insignificant results.

From AVAC Report 2011: The End?, www.avac.org/report2011.

Something for everyone

How combination ART works

How combination prevention works

Combining for synergy; but what <u>is</u> synergy?

Synergy with VMMC plus behavior change

How much coverage is needed for 20% reduction in incidence?

Combination prevention

- Type of intervention
 - Biomedical, behavioral, social/structural
- Level of delivery
 - Individual, couple, network, community, population
- HIV status

11

• Positive, negative

All prevention is "combination"

For population impact, need: ✓ Coverage (demand, supply) ✓ Adherence ✓ Retention ✓ Scalable ✓ Cost-effective (achievable) ✓ Adaptable for different populations

McNairy et al, Curr HIV/AIDS Rep 2013

Bridgehiv

A sample of individual interventions

HIV testing

- "Gateway" to other interventions
- Knowing status reduces reported risk for HIV positives only
- In Project Accept (HPTN 043), community mobilized VCT
 - Increased testing (70,000 tests vs. 7600 tests)
 - Non-significant 14% reduction in incidence
- Rapid tests increase results
 - Counseling may not further reduce risk (Metsch JAMA 2013)

Impact of reduced HIV testing coverage

Alsallaq et al; PLOS One 2013

Treatment as Prevention (TasP)

- 96% reduction in HIV transmission when ART started at CD4 350-500 rather than lower
- Doesn't cover 20-35% transmissions outside partnership
- Not known:
 - Effect MSM, IDU
 - Uptake with high CD4 counts
 - Effectiveness in general population (e.g., adherence, retention, STIs)
 - Cost, availability, scale-up

Cohen et al, NEJM 2011

Voluntary medical male circumcision (VMMC)

- 60% reduction in HIV acquisition among HIV- heterosexual men
 - Protection appears durable and may increase over time
 - Cost-effective, one-time intervention
- Unclear benefit for
 - MSM
 - Women (may be largely indirect effects), raising "fairness" questions
- Scale-up challenging, supply and demand
 - Dev't and testing new devices, task shifting

Mixed Oral Pre-Exposure Prophylaxis Results

Study	Population	Product	HIV incidence in placebo	Overall Efficacy	% TDF detected	Efficacy w/drug
iPrEx	MSM, Trans	TDF/FTC	3.9	44%	51%	92%
Partners PrEP	Hetero couples	TDF/FTC TDF	2.0	75% 67%	82%	90%
TDF 2	Young M & W	TDF/FTC	3.1	63%	80%	84%

Mixed Oral Pre-Exposure Prophylaxis Results

Study	Population	Product	HIV incidence in placebo	Overall Efficacy	% TDF detected	Efficacy w/drug
iPrEx	MSM, Trans	TDF/FTC	3.9	44%	51%	92%
Partners PrEP	Hetero couples	TDF/FTC TDF	2.0	75% 67%	82%	90%
TDF 2	Young M & W	TDF/FTC	3.1	63%	80%	84%

Fem-PrEP	Young women	TDF	5.0	None	37%	NA
VOICE	Women	TDF/FTC TDF	5.7	None	30%	NA

Potential reasons for disparate PrEP results

- Adherence, adherence, adherence
 ✓ Drug levels, relationship to exposure
- High HIV incidence
 - ✓ But subgroup analyses in Partners PrEP, iPrEx didn't find this
- Susceptibility factors (e.g., age, # partners, STI, sexual practices)
- Infectiousness (e.g., ART/VL, STIs)
- Route of acquisition

Challenges and the way forward

1. Keeping it desirable, deliverable, and scalable

2. Adherence is necessary but not always sufficient for efficacy

Koenig et al, Am J Prev Med 2013

Adherence has major effect on variability of response

If could reduce variability from PK/PD by 90%, variability only reduced by 1/3

Blaschke et al., Ann Rev Pharmacol Toxicol 2012

Adherence interventions: scalable and effective

Adherence devices

- Reminders: pill boxes, alarms, SMS
- Text messages to triage pts needing help [Lester et al, Lancet 2010]
 - Weekly text to pts initiating ART
 - Improved self-reported adherence and VL suppression

Ongoing support

- One-on-one counseling deteriorates over time
- Enlisting partners, families may be effective

SMS Reminders: Sunscreen Example

Armstrong Arch Derm 2009

3. Models need input from real world situations

Bridgeнıv

Eaton et al, PLOS Medicine 2012

4. Need for a robust product pipeline

AVAC, October 2013

ACTIVE DRUG

5. Living in a time of constrained resources

"O.K, let's slowly lower in the grant money." Todd Bearson Arlington, Mass.

New Yorker, 2009

Multiple trials, multiple locations

Maintaining a diversified portfolio

- By population (region, risk group, network structure)
- By stage (individual component, package, scale-up)
- When to "confirm" and when to ask new questions?
- Can "intermediate" endpoints be used? When?

Combination prevention <u>can</u> change outcomes

•Age-adjusted cardiac mortality in the US fell by >40% from 1980-2000

•Approximately half of this reduction from decreased risk factors

•Approximately half from treatment

•Findings similar to other studies

Ford et al, NEJM 2007

Acknowledgments

Connie Celum Tim Hallett Albert Liu Mitchell Warren

Clinical Trials Networks DAIDS

